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NASA TT F-11,551

RIEMANN'S PROBLEM WITH- CONTINUOUS COEFFICIENT

I. B. Simonenko
State University, Rostov-on-the-Don

ABSTRACT: A procedure for solving Riemann's boundary-
value problem for the boundary between a multiply-connected
region and its complement. Generalization of a result found
previously by Gakhov by relaxing the conditions on the given
functions. A slight change in one of the given functions does
not appreciably change the result, so that a sequence of
approximations is possible.

1°. Statement of the problem. Let C denote a contour consisting of m +1  /278%

simple closed contours CO’ Cl’ ceey Cm of the Lyapunov type that bound a
connected region D+, Its complement with respect to the plane consists of the
union of m bounded simply-connected regions Dl'( (for k=1, ..., m) and an in-

finite region Da. For brevity, we shall refer tothis complement as a region and

shall denote it by D”. Following the general practice, we denote by Lp (C) the

class of functions that are p-summable on the contour C.
We formulate Riemann's problem as follows:

Find functions <I>' that are analytic** in D' that have almost everywhere on
the contour C 11m1t1ng angular values &% (t) belongmg to L (C) with p > 1, that

satisfy the condition &~ (o) = 0, and that satisfy the boundary condition

T =G 2T () +e ) (1)

where g(t); € L (C) and G(t) is a continuous function that vanishes nowhere.

As usual, we call the integer x = Z ®x where ¥, = 5= larg G ()Ic,, the index
k=0

of the problem.

We take as positivedirection around aboundary of D* that direction which puts D+
' on one's left.

L.

*Numbers in the margin indicate pagination in the foreign text.
**We consider only functions that can be represented by a Cauchy integral.



Riemann's problem has been solved in closed form by F.D. Gakhov [1] for the
case in which G(t) and g(t) satisfy a HUlder condition. B.V. Khvedelidze genera-
lized this solution to the case of a multiply-connected region [2] when g is p-
summable for p >1 [3].

In the present article, we show that Gakhov's results dealing with Riemann's
problem remain valid when G(t) is assumed merely continuous.

2°. We know that every summable function can be represented in the form
O (f) = O (t) — D~ (1), (2)

where the <I>i'(t) are almost everywhere limiting angular values of functions <I>i'(z)
that are analytic in DZ. The representation (2) is unique if we assume that
<I>—(t) €L (C) (with § >0) and & (oo) = 0,

The functions @i(t) are glven by Sokhotskiy's formulas /279
' m(x) e 7
(D*(f): -E(D(I)-{--Z—;‘:i — dr,
- 1 1 ( ) (3)
O ()= — 5 O(t) + m§;:—‘-dr.

The validity of formulas (3) for summable & was shown by I.1. Privalov [4].
B.V. Khvedelizde [3] showed that membership of ¢(t) in the class L (C), for

p > 1, implies that & (t) and & (t) belong to L (C) also and that the smgular

operator LS 19’ ) 4¢ is a bounded operater in the norm of the space L (C), for

D 1
p >1; that 1s (S ‘;S py () ,d- ‘ dS) ” ‘M,,(S |(D(t)|"ds) p. where Mp is a constant
independent of <I>.b It follows from this that®

M,+1
2

nmt “Lp 2 "q)"Lp .{ 2",' m”Lp {'. a) "va

where
1), = (§1o@ras)”.
[

This enables us to formulate Riemann's problem in the following form.

Find a function & belonging to the class Lp('c) and satisfying the boundary

condition (1), where <I>+ and & denote the operators defined by equations (3).

i  Our investigation is based on the following simple idea: If G = 1, Riemann's
problem reduces to a saltus problem and unconditionally has a umque solution in
the class Lp. It turns out that small deviations in the coefficient G from unity
do not change the nature of the solution. This can be proved by the method of



successive approximations. We can shift to the general case choosing a sequence
of functions satisfying a Hblder condition that converges to In G. An analogous
device was used by S.G. Mikhlin [5] in his investigation of singular integral equa-
tions with Cauchy kernel.

3°. Let us look at the case of Riemann's problem when G(t) is measurable
and satisfies the condition

160 —11<a<5. EWELQ) (P>

If we subtract ® from both sides of (1), we obtain

O () =[G (1) — 11D (1) + g (&) (4)
Note that
16 =10y, = (1o —1r10-1ds)” <
Toc
<q({10pas)” = o520,

C

Applying the principle of 6ontraction mappings, we see that the problem (4) 4

' (and consequently (1)) necessarily has a unique solution.

4°, The casen 0 %1% Ty T 0. In this case, In G is a continuous /280

function. Let us approximate it with a function f that satisfies a Hlder condition
and that satisfies the inequality

2
Jemo-n 1 [Lqg < ——5 - 5

Furthermore, by using Gakhov's method, we can represent the function
Gl(t) = ef in the form of a ratio Gl(t) = X+(t) /X (t), where the x* are functions
that areanalytic in the regions Dt + C, and nonzero everywhere. -

Let us introduce new functions <I>j1: = ¢t [X]_l, in terms of which the problem

(1) can be written as follows:
G 4
Of = 507 + & (6)

By virtue of condition (5), the coefficient GG;1 satisfies the requirements
of section 3°. Therefore, the problem (6) and, hence, the problem (1) in the
case n g =N, = ...=N = 0 necessarily has a unique solution,

5°, Let us now investigate the most general case.

a) # = 0. Introducing the new unknown functions



Of ()= [[e~2"0* (@), O (@)= (2) (2€Dy)
N ’
| we arrive at the problem
of = "0} +- " ™
where
Goy=J[—w"6w., o= ,.H (t —z)™g (t).
k=3l =] )

We note that

xff=—21;[érg6*]ck=0, E=1,0e.,m xf=2iﬂ[arg G*]C.=x=0.

Therefore, on the basis of the results of section 4°, we conclude that the
problem (6), andhence problem (1) in the casen = 0 have a unique solution.

b) » >0. Let us write the problem (1) in the following form:

(t —2o) O () — (t — 20)™ Puy (£) =
=(t—2) 7 G(E)DT(£) + (f —20) T g (t) — (t — 20) ™" Pur (t),

where z(;\é D+; P% is a polynomial of degree not exceedingn - {I:chosenmqgch\\ ,,

-1
a way that the function (z - z 0)-% [cI>+(z) - P%_l(z)] does not have a pole at the
point z 0" We note that Ind (t - z ())"K G = 0. We denote by R¥ an operator solving

Riemann's problem with coefficient (t - z ™ G. Then we have

o
(= 2 (9 () = P ()] = R* 1@ (6) — Pt (0) (£ — 207,
O () = RTI(g () — Puct () (t — 2) ™"}, (8)
We find &' from the first equation:
O (1) = Puey (1) + (¢ — 2)"R* (g (1) — Pucy () (f — 2)™"]. ©)

We have shown that the solution of the problem (1) must be of the form /281
(8) or (9). However, one can easily see that, for an arbitrary polynomial
P% -1 formulas (8) and (9) yield the general solution of the problem.

c) n < 0. We write the problem (1) in a different form:
QT (E—2) ™ =G (1) (t —2) DT () - g (O) (t — 2)™.

Obviously, Ind (t - z,)™ G(t) = 0 and (¢ - 0)‘“@* (t) is analytic in D*. If we

again denote by RY an operator that solves Riemann's problem with coefficient

4




t-z )™ G, we obtain

o
Ot (2) = (2 — 2 R*[(t — 297" 7 (). (10)

D~ (2) = R™[(t — 2)"g ()] (11)

The function defined by the expression (10) has, in general, a pole of
order, |u|at the point z Therefore, for the problem posed to have a solution,

6
l nlsolvabﬂlty conditions must be satisfied:
§ (t— 207" R* [ (1) (¢ — 20) ™ ]dt =- 0. (12)

When (12) is satisfied, the problem has a unique solution.
Summarizing the results of section 5°, we have:

Theorem. a) In the casex = 0, Riemann's boundary problem has a unique
solution.

b) In the casen >0, the problem is always solvable, and its general solu-
tion has linearly independent components. .

c) In the casen < 0, the problem has a solution only when |u| solvability

conditions Skg 0 are sat1sf1ed where the Sk are linearly independent functionals.

When these conditions are satisfied, the problem has a unique solution.

In conclusion, I wish to express my deep gratitude to F.D. Gakhov, who
supervised the work, and to V.V, Ivanov for useful criticism of it.
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